Wind turbine research activity at University of Padova

Andrea Dal Monte*, Luca Menegozzo and Ernesto Benini

Department of Industrial Engineering, Università Degli Studi di Padova

*andrea.dalmonte@unipd.it

1. Research activities

COMETES research group has several years of experience in the study of wind turbines design:

- 1D BEM model and 2D-3D CFD models (ANSYS Fluent, OpenFOAM)
- Aero-structural analysis and multi-objective optimisation
- Fully automatic OpenSource environment for HAWT / VAWT aerodynamic analysis
- Unsteady analysis of wind turbine operating under gust conditions

2. The BEM method

- Fast and accurate estimation of aerodynamic performance
- Negligible computational effort compared to a 3D CFD
- BEM + panel code (e.g. xFoil): forces for different rotational speeds
- Forces integral along radius: net thrust of the blade

3. Multi-objective optimisation

The optimisation of the wind turbine design is usually carried using the evolutive multi-objective **genetic algorithms**:

- Mathematical reconstitution of the airfoil using Bezier curve or B-Spline
- Several objectives: structural, aerodynamic and economics
- Both low and high fidelity methods for performance estimation

6. The SOCRATE algorithm

SOCRATE (Structural Optimisation for Composite Rotor Air TurbinE): multi-disciplinary and multi-objective optimisation of wind turbines^[2].

- Different parametrization techniques: select the layout of the composite structure of the blade (materials, fibre orientations, thickness, position of reinforcements).
- Multi-objective optimisation: structural objectives (maximum tip deformation, flapwise and edgewise rigidity) and aerodynamic objectives (Annual Energy Production, Cost Of Energy)

8. References

[1] A. Dal Monte, Development of an open source environment for the aero-structural optimization of wind turbines, Ph.D. Thesis, 2017.

[2] A. Dal Monte, S. De Betta, M. R. Castelli, E. Benini, *Proposal for a coupled aerodynamic–structural wind turbine blade optimization*, Composite Structures, 159, 144-156, 2017.

[3] L. Menegozzo, A. Dal Monte, E. Benini, A. Benato, *Small wind turbines: a numerical study for aerodynamic performance assessment under gust conditions.* Renewable Energy, 121, 123 - 132, 2018

4. Validations of CFD and BEM models

Validation of steady / unsteady RANS CFD models and BEM model using data of SANDIA and NREL turbines:

- Power curve
- Stall development
- Turbulence model influence
- Grid sensitivity
- FEM analysis

5. VAWT optimisation: an open-source toolbox

A fully automated open-source environment for the vertical axis wind turbine optimization has been developed and validated $^{[1]}$.

The modules involved are:

- Dakota: Optimization setting
- Salome:
 Geometry generation
 Mesh creation
- OpenFOAM: URANS CFD analysis
- ParaView: Post-Processing

7. Wind gust operating conditions

Aerodynamic analysis of a small HAWT operating under ${\bf gust} \ {\bf conditions}^{[3]}$:

- Wind gust: short and strong peak in wind velocity
- Extreme Operating Gust wind velocity profile from IEC 61400-2
- Unsteady CFD using moving mesh and variable wind profile
- Stress analysis at the blade root following IEC guidelines

